

SOLVING PDES WITH THE FINITE ELEMENT METHOD **USING FIREDRAKE**

ABSTRACT

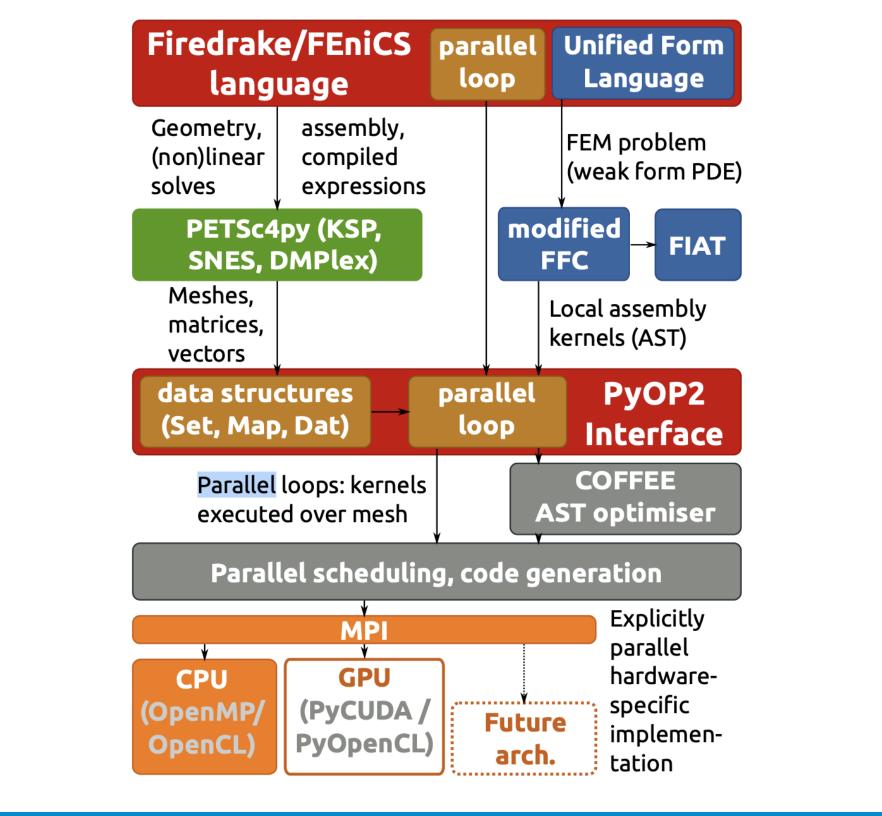
Partial Differential Equations (PDEs) are used to model a wide variety of phenomena such as sound, heat, diffusion, fluid dynamics, elasticity, etc. While some of these equations can be solved analytically, in most cases one needs to implement a numerical method such as the finite element method (FEM) to solve them numerically. Firedrake is a FEM-based automated system for solving PDEs numerically that can be used to alleviate implementation burden.

Goal of the project: The main goal of this project is to investigate Firedrake's potential as a PDE solver for inverse problems governed by PDEs. In particular we:

- 1. Investigated how to install and run Firedrake.
- 2. Implemented the Poisson model problem.
- 3. Studied the convergence for the numerical solution of the Poisson problem with linear and quadratic finite element basis functions.

FIREDRAKE: PDE TOOLBOX

The Firedrake software stack is made up of various packages and layers, which are used together to compose models of finite element problems. The following illustration³ shows the internal Firedrake toolchain.



ACCURACY OF THE FEM APPROXIM • u_h : numerical sol. for mesh size h A-priori • $e = u - u_h$: FEM approximation error • *p*: the power of the finite element basis functions; it measures the rate of conver- $||e||_{L^2}$

• C_1, C_2, C_3 : constants independent of h

gence

 $||e||_E$

 $||e||_{\infty}$

STEFANY AREVALO, RADOSLAV VUCHKOV & NOEMI PETRA APPLIED MATHEMATICS, UNIVERSITY OF CALIFORNIA, MERCED

SOLVING THE POISSON PROBLEM WITH FIREDRAKE

The Poisson equation is a prototype elliptic partial differential equation. Let Ω and $\Gamma = \Gamma_N \cup \Gamma_D$ ($\Gamma_N \cap \Gamma_D = \emptyset$) be the domain and boundary, respectively.

Poisson Problem:

$-\nabla \cdot (\kappa \nabla u) = f,$	in Ω
$\nabla u \cdot \boldsymbol{n} = g,$	on Γ_N
$u = u_0,$	on Γ_D

Input Parameters:

 $f(x,y) = 2\pi^2 [\sin^2(\pi x) \cos(2\pi y) - \cos(2\pi x) \cos^2(\pi y)] \quad (0,0)$ g(x, y) = 0

$$u_0(0, y) = u_0(L, y) = 0, \kappa = 1, L = H = 1$$

True Solution:

 $u_{\rm true}(x,y) = \sin^2(\pi x)\cos^2(\pi y)$

Function Spaces:

$$L^{2}(\Omega) := \left\{ \forall v : \int_{\Omega} |v(x)|^{2} dx < \infty \right\}$$
$$\mathcal{H}^{1}(\Omega) := \left\{ v \in L^{2}(\Omega) : \frac{\partial v}{\partial x_{i}} \in L^{2}(\Omega) \right\}$$
$$\mathcal{V} := \left\{ v \in \mathcal{H}^{1}(\Omega) : v = u_{0} \text{ on } \Gamma_{D} \right\}$$
$$\mathcal{V}_{0} := \left\{ v \in \mathcal{H}^{1}(\Omega) : v = 0 \text{ on } \Gamma_{D} \right\}$$

The Poisson equation can be formulated in a variational form; that is, a form where the variable u can be approximated numerically while in the same time we relax some of the regularity conditions.

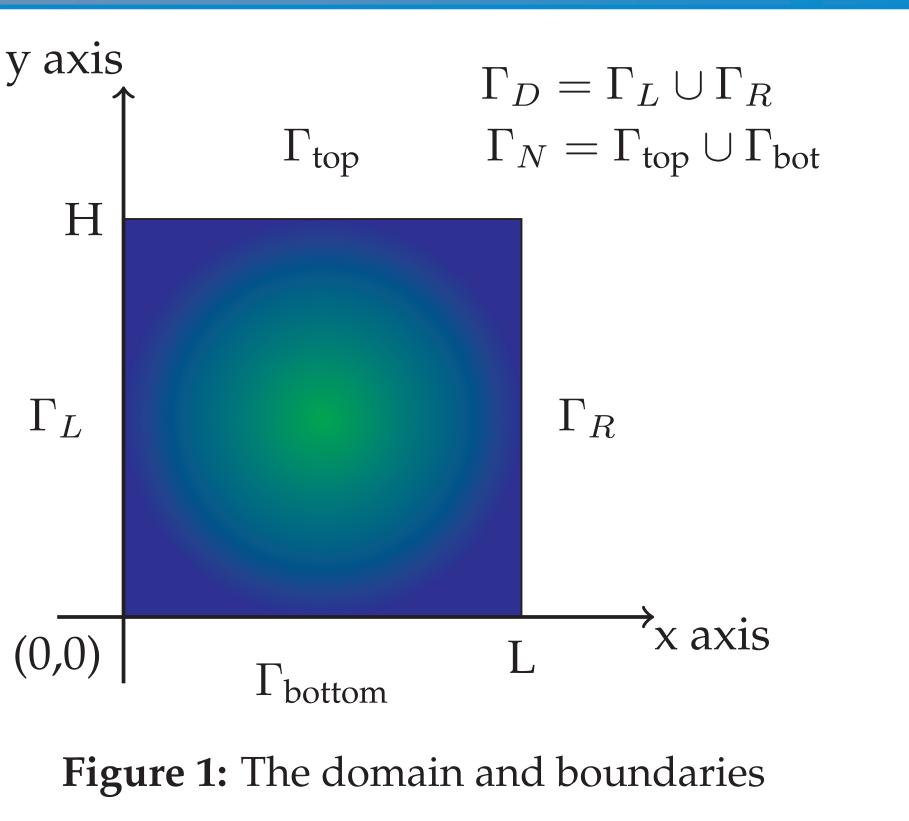
Variational Formulation of the Poisson Problem

Find $u \in \mathcal{V}$ such that

$$\int_{\Omega} \kappa \nabla u \cdot \nabla v \mathbf{d}\Omega = \int_{\Omega} f v \mathbf{d}\Omega + \int_{\Gamma_N} g v \mathbf{d}\Gamma_N$$

for all test functions $v \in \mathcal{V}_0$.

ATION ²		Ref
ri error estimates [?]:		¹ The 2
$E = \frac{1}{2} \int_{\Omega} \kappa \left[\frac{de}{dx}\right]^2 dx \le C_1 h^p$	Energy Norm	² Beck Englev
$e_2 = \left(\int_{\Omega} e^2 dx\right)^{1/2} \le C_2 h^{p+1}$	L^2 Norm	³ Flor Gheor
$\sum_{x \in \Omega} e(x) \le C_3 h^{p+1}$	Uniform Norm	metho



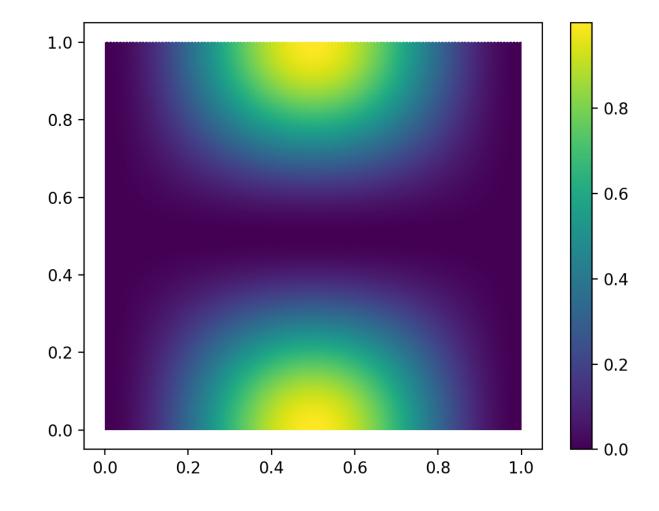


Figure 2: The true solution $u_{true}(x, y)$

Figure 3: Log-log plot of the errors $||e||_E$, $||e||_{L^2}$ as functions of *h* for the Poisson problem for piecewise-linear (blue) and quadratic (black) basis functions.

CONCLUSIONS & FUTURE WORK

- umentation.
- Paraview, etc.

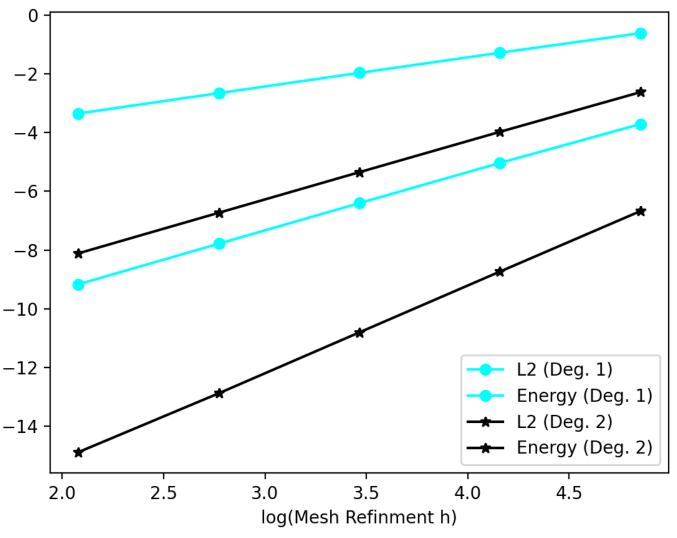
ERENCES

Firedrake Team. "Firedrake Documentation.", https://www.firedrakeproject.org/documentation.html. cker, E. B., Graham F. Carey, and J. T. Oden. Finite Elements : An Introduction. Volume 1. Prentice Hall, ewood Cliffs, N.J., 1981.

rian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T. McRae, orghe-Teodor Bercea, Graham R. Markall, and Paul H. J. Kelly, 2015. Firedrake: automating the finite element od by composing abstractions. ACM Trans. Math. Softw. 0, 0, Article 0 (0), 28 pages.

NUMERICAL SOLUTION

Convergence study				
Rate	<i>E</i> -Error	Rate		
3.76	2.79e-1	1.95		
7.87	1.88e-2	3.87		
3.94	1.40e-1	1.99		
7.94	4.76e-3	3.96		
3.98	7.03e-2	2.00		
7.97	1.19e-3	3.99		
4.00	3.52e-2	2.00		
7.45	2.99e-4	3.99		
	Rate 3.76 7.87 3.94 7.94 3.98 7.97 4.00	Rate E -Error3.762.79e-17.871.88e-23.941.40e-17.944.76e-33.987.03e-27.971.19e-34.003.52e-2		



• Firedrake offers a user friendly and comprehensive installation process, with detailed instructions/doc-

• Capabilities include: weak forms, derivatives, access to PETSc linear algebra solvers, visualization with

• The numerical results comply in accordance to the expected theoretical convergence rates.

• Future work includes extending the Poisson code to an inverse problem and to investigate the parallelism capabilities of Firedrake.